
2,4,6-Trimethylphenol was oxidized with oxygen in the
presence of (1,4,7-tribenzyl-1,4,7-triazacyclononane)copper(II)
chloride as a catalyst to produce exclusively a coupled product
stilbenequinone, without the formation of oxygenated products.

The outcome of the copper-catalyzed oxidation of 2,4,6-
trimethylphenol with oxygen has been dominated by oxygenat-
ed products such as 4-hydroxy-3,5-dimethylbenzaldehyde, 2,6-
dimethyl-p-benzoquinone, and 4-alkoxy-2,6-dimethylphe-
nols.1,2 This reaction, effectively catalyzed by copper(II) chlo-
rides coupled with diethylamine, hydroxylamine, or oximes,
has attracted much attention not only as a convenient synthetic
method for p-hydroxybenzaldehyde that is an important inter-
mediate in the industrial synthesis of dyes, polymers, pharma-
ceutical and agrochemicals, but also as the relevant model for
the biosynthesis of vitamin E.3 Another important oxidation
chemistry of phenols is the coupling of o- and/or p-unsubstitut-
ed phenols to give diphenoquinones and phenylene oxide poly-
mers.4–7 On the other hand, the oxidative coupling of 2,4,6-tri-
alkylated phenols at the benzylic carbon is less frequent, and
has so far required a large amount of strong oxidants in the
absence of oxygen.  For example, the oxidation of 2,6-di-tert-
butyl-4-methylphenol with iodine gives a mixture of 1,2-
bis(3,5-di-tert-butyl-4-hydroxyphenyl)ethane and 3,3',5,5'-tetra-
tert-butylstilbene-4,4'-quinone,8 and 2,4,6-trimethylphenol is
oxidized by silver carbonate into stilbenequinone,9 though the
product is not well characterized.  Herein we report our suc-
cessful attempts to use oxygen as an oxidant for the oxidative
coupling of 2,4,6-trimethylphenol.  Combination of X-ray crys-
tallographic and spectroscopic methods revealed that the prod-
uct is solely the corresponding stilbenequinone 4.

Recently, it was shown that the oxidative polymerization of
2,6-difluorophenol with oxygen is accomplished using copper
complexes with 1,4,7-trialkyl-1,4,7-triazacyclononane ligands as
catalysts.10 The strong oxidizing power of the complex demon-
strated by the reaction led us to examine the oxidation of 2,4,6-
trimethylphenol.  The overall oxidation from trimethylphenol to
stilbenequinone is a 3-electron, 3-proton transfer process.  Under
argon, upon the addition of a CH2Cl2 solution of 3 equiv of
(1,4,7-tribenzyl-1,4,7-triazacyclononane)copper(II) chloride
([(tacn)CuCl2]) to a solution of 2,4,6-trimethylphenol in CH2Cl2
containing 3 equiv of triethylamine at −5 °C, the greenish yel-
low solution slowly turned to a transitory brown color indica-
tive of the formation of the corresponding copper(I) and phe-
noxyl radical (Scheme 1),8 which changed to dark red upon
standing overnight.  Layering the solution with diethyl ether
afforded dark red crystals of the product in 90% yield.  The 1H
and 13C NMR spectra of the crystallized product11 revealed a
coupled quinoid structure having only two nonequivalent
methyl groups, which corresponded to those of the centrosym-

metric stilbenequinone coupled at the o- or p-position.  X-ray
analysis12 revealed the p-coupled structure having the crystallo-
graphic center of symmetry located at the center of the mole-
cule (Figure 1).  The product, 3,3',5,5'-tetramethylstilbene-4,4'-
quinone, is a fully oxidized dimer.  The partially oxidized struc-

tures such as 1,2-bis(3,5-dimethyl-4-hydroxyphenyl)ethane and
trans-1,2-bis(3,5-dimethyl-4-hydroxyphenyl)ethylene are
excluded by the planar framework of the molecule and the short
C–O distance which is close to the typical bond length of a car-
bonyl group.  The short C(8)–C(8)* bond length corresponds to
the partial double bond in stilbenequinone.  After the reaction, a
reasonable amount of the copper(I) complex (Figure 2) was iso-
lated.13 It should be noted that the partially oxidized dimers are
not produced even when only 0.3 equiv of [(tacn)CuCl2] is
reacted with 2,4,6-trimethylphenol under argon; 4 is obtained as
the sole product in 10% yield, and unreacted trimethylphenol is
recovered from the solution.  The absence of the partially oxi-
dized by-products supports the fact that they are more easily oxi-
dized by the copper(II) complex.8 On the contrary, 4 is obtained
in 100% yield when the same reaction is carried out in the pres-
ence of oxygen, indicating that the catalytic oxidation with oxy-
gen is accomplished.  The amount of oxygen uptake with respect
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to the yield of 4 (150 mol%) was in accordance with the 4e–

reduction of oxygen.14

The question arises as to the origin of the contrast with the
precedented oxygenation of 2,4,6-trimethylphenol at the p-
methyl group that takes place when the conventional copper(II)
complexes are used as the catalyst (Scheme 2).1,2 Recently,

Kobayashi et al. reported that a phenoxyl radical-copper(I) inter-
mediate is generated instead of the free phenoxyl radical during
the oxidative polymerization of phenol catalyzed by (1,4,7-triiso-
propyl-1,4,7-triazacyclononane)copper(II) chloride.15,16 In addi-
tion, it was shown that a phenoxocopper(II) complex isolated
from the reaction of 4-fluorophenol and a copper(II) complex
with a bulky ligand could be equibrated with a copper(I) phe-
noxyl complex in solution due to the resonance.17 Thus, the
resulting phenoxyl radical could stay in the coordination sphere
of copper(I).18 A similar reaction has been reported for the oxi-
dation of catechol to give a copper(I) semiquinone complex.19

By analogy to these reactions, it is postulated that the phenoxyl
radical is bound to copper(I) (Scheme 1).  Although the isolation
of the copper(I) phenoxyl complex 2 is unsuccessful, it seems
reasonable to suppose that the coupling reaction prevails due to
the lower reactivity of 2 toward oxygen (Scheme 1) than that of
the free radical 5 (Scheme 2).  This is partly corroborated by a
control experiment using (1,4,7-triazacyclononane)copper(II)
chloride as a catalyst, which should less strongly binds
phenolate:20 concurrent side reactions give a significant amount
of the oxygenated products.  The control of phenoxyl coupling by
the coordination of a copper complex is reminiscent of the
regioselective oxidative polymerization of 2,6-unsubstituted phe-
nol.15,16 The high selectivity for the coupling of 2 should allow
kinetic and energetic studies, which is the topic of our continuous
research.
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